Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667301

RESUMO

Phytohormones, particularly cytokinin trans-zeatin (tZ), were studied for their impact on the green alga Desmodesmus armatus under cadmium (Cd) stress, focusing on growth, metal accumulation, and stress response mechanisms. Using atomic absorption spectroscopy for the Cd level and high-performance liquid chromatography for photosynthetic pigments and phytochelatins, along with spectrophotometry for antioxidants and liquid chromatography-mass spectrometry for phytohormones, we found that tZ enhances Cd uptake in D. armatus, potentially improving phycoremediation of aquatic environments. Cytokinin mitigates Cd toxicity by regulating internal phytohormone levels and activating metal tolerance pathways, increasing phytochelatin synthase activity and phytochelatin accumulation essential for Cd sequestration. Treatment with tZ and Cd also resulted in increased cell proliferation, photosynthetic pigment and antioxidant levels, and antioxidant enzyme activities, reducing oxidative stress. This suggests that cytokinin-mediated mechanisms in D. armatus enhance its capacity for Cd uptake and tolerance, offering promising avenues for more effective aquatic phycoremediation techniques.


Assuntos
Antioxidantes , Cádmio , Clorófitas , Zeatina , Cádmio/toxicidade , Zeatina/metabolismo , Zeatina/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Clorófitas/efeitos dos fármacos , Clorófitas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Fitoquelatinas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo
2.
Chemosphere ; 354: 141684, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494005

RESUMO

The presented research concerns the use of nickel cobaltite nanoparticles (NiCo2O4 NPs) for the heterogeneous activation of peracetic acid and application of NiCo2O4-PAA system for degradation 10 organic micropollutants from the group of bisphenols. The bisphenols removal (initial concentration 1 µM) process was optimized by selecting the appropriate process conditions. The optimal amount of catalyst (115 mg/L), peracetic acid (PAA) concentration (7 mM) and pH (7) were determined using response surface analysis in the Design of Experiment. Then, NiCo2O4 NPs were used to check the possibility of reuse in subsequent oxidation cycles. The work also attempts to explain the mechanism of oxidation of the studied micropollutants. The participation of the sorption process on the catalyst was excluded and based on the experiments with radical scavengers it can be concluded that the oxidation proceeds in a radical pathway, mainly with participation of O2•- radicals. Experiments conducted in real water matrices exhibit low impact on degradation efficiency. Toxicity tests with green alga Acutodesmus obliquus and aquatic plant Lemna minor showed that post-reaction mixture influenced growth and the content of photosynthetic pigments in concentration dependent manner.


Assuntos
Araceae , Compostos Benzidrílicos , Minerais , Oxidantes , Fenóis , Poluentes Químicos da Água , Ácido Peracético , Peróxido de Hidrogênio , Níquel , Oxirredução
3.
Sci Rep ; 14(1): 6808, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514768

RESUMO

Utilizing the organic fraction of agri-food industry waste for fertilization represents one approach to waste management, with composting emerging as a popular method. Composts derived from this waste may contain plant hormones alongside primary macronutrients. This study aimed to evaluate the content of plant hormones in composts crafted from the organic fraction of agri-food industry waste. The presence of these substances was ascertained using liquid chromatography-mass spectrometry (LC-MS) analysis, applied to extracted samples from three composts produced in a bioreactor and three obtained from companies. The results indicate the presence of 35 compounds, which belong to six types of plant hormones: auxins, cytokinins, gibberellins, brassinosteroids, abscisic acid, and salicylic acid, in composts for the first time. The highest amount of plant hormones was noted in buckwheat husk and biohumus extract (35 compounds), and the lowest in hemp chaff and apple pomace (14 compounds). Brassinosteroids (e.g., brassinolide, 28-homobrassinolide, 24-epicastasterone, 24-epibrassinolide, and 28-norbrassinolide) and auxins (e.g., indolilo-3-acetic acid) are dominant. The highest concentration of total phytohormones was reported in biohumus extract (2026.42 ng g-1 dry weight), and the lowest in organic compost (0.18 ng g-1 dry weight).


Assuntos
Compostagem , Reguladores de Crescimento de Plantas , Brassinosteroides , 60659 , Solo , Ácidos Indolacéticos
4.
Metabolites ; 13(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623827

RESUMO

Phytohormones exhibit a wide range of chemical structures, though they primarily originate from three key metabolic precursors: amino acids, isoprenoids, and lipids. Specific amino acids, such as tryptophan, methionine, phenylalanine, and arginine, contribute to the production of various phytohormones, including auxins, melatonin, ethylene, salicylic acid, and polyamines. Isoprenoids are the foundation of five phytohormone categories: cytokinins, brassinosteroids, gibberellins, abscisic acid, and strigolactones. Furthermore, lipids, i.e., α-linolenic acid, function as a precursor for jasmonic acid. The biosynthesis routes of these different plant hormones are intricately complex. Understanding of these processes can greatly enhance our knowledge of how these hormones regulate plant growth, development, and physiology. This review focuses on detailing the biosynthetic pathways of phytohormones.

5.
Environ Pollut ; 333: 122029, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336351

RESUMO

Light and ultrasound have been tested as physical factors activating peracetic acid (PAA) to oxidize bisphenols (BPs). Based on the chemometric approach of the Taguchi method, UV irradiation with a wavelength of 254 nm was selected as the optimal type of PAA activator. The effectiveness of the UV/PAA system was also compared with other oxidation methods. Under optimal conditions ([BPs]0 = 1 mg/L, 1 mM PAA, pH 9, UV 254 nm) the tested bisphenols are completely degraded within 15-60 min. The influence of the matrix on the process of organic micropollutants removal in the UV/PAA system was also investigated. Toxicity assessment leads to the conclusion that the reaction mixture shows limited toxicity towards living organisms.


Assuntos
Ácido Peracético , Poluentes Químicos da Água , Águas Residuárias , Oxirredução , Raios Ultravioleta , Peróxido de Hidrogênio
6.
Environ Pollut ; 332: 121982, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301460

RESUMO

Phytoremediation of benzotriazoles (BTR) from waters by floating macrophytes is not well understood, but it seems to have the potential to be used in conjunction with conventional wastewater treatment plants. The effectiveness of removing four compounds from the benzotriazole group by floating plants Spirodela polyrhiza (L.) Schleid. And Azolla caroliniana Willd. From the model solution, was studied. The observed decrease in the concentration of studied compounds was in the range 70.5%-94.5% using S. polyrhiza, and from 88.3% to 96.2% for A. caroliniana. It was determined using chemometric methods that the effectiveness of the phytoremediation process is mainly influenced by three parameters: exposure time to light, pH of the model solution and the mass of plants. Using the design of experiments (DoE) chemometric approach, the optimal conditions for removing BTR were selected: plant weight 2.5 g and 2 g, light exposure 16 h and 10 h, and pH 9 and pH 5 for S. polyrhiza and A. caroliniana, respectively. Studies on the mechanisms of BTR removal have shown that the reduction in concentration is mainly due to the process of plant uptake. Toxicity studies have proved that the tested BTR affected the growth of S. polyrhiza and A. caroliniana and induced changes in the levels of chlorophyllides, chlorophylls as well as carotenoids. More dramatic loss in plant biomass and photosynthetic pigment contents was observed in A. caroliniana cultures exposed to BTR.


Assuntos
Araceae , Gleiquênias , Biodegradação Ambiental , Triazóis
7.
BMC Plant Biol ; 23(1): 19, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627562

RESUMO

This study aims to provide insights into plant-insect interaction during the formation and development of open gall structure on the leaves of Robinia pseudoacacia during gall formation by Obolodiplosis robiniae. This was the first time such far-reaching studies were performed at a biochemical and anatomical level. The gall wall is created from a few thick cells covered with epidermis. This parenchymatous nutritive tissue is rich in starch. Sclerenchyma only occurs around the vascular bundles as a result of the lignification of the parenchyma of the bundle sheaths. The level of reactive oxygen species (ROS) in the new structure was reduced and catalase activity was inhibited, which suggests another pathway of ROS decomposition - e.g. by ascorbate or glutathione peroxidase. The gall structure was combined with an increasing level of protein and non-protein thiols. Phenols seems to be a good protective factor; whose level was lower in infected leaflets. Levels of MUFA (monosaturated fatty acids) and SFA (saturated fatty acids) rose, probably as source of food for insects. The amount of fatty acid is positively correlated with the plant response. We detected that non infected leaflets produced C6:0 (hexanoic acid) and C8:0 (octanoic acid) fatty acids connected with odor. Changes in gall color as they develop are connected with photosynthetic pigments degradation (mainly chlorophylls) where the pathway of astaxanthin transformation to fatty acid is considered to be the most important process during gall maturation. Nutritive tissue is composed mainly of octadecanoic acid (C18:0) - a main source of food for O. robiniae.


Assuntos
Dípteros , Robinia , Animais , Espécies Reativas de Oxigênio , Insetos , Plantas , Ácidos Graxos , Folhas de Planta/fisiologia , Tumores de Planta
8.
Sci Total Environ ; 847: 157571, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35882328

RESUMO

In the presented work, phytoremediation with the use of floating plant Wolffia arrhiza (L.) Horkel ex Wimm. was proposed as a method of removing the selected benzotriazoles (BTRs): 1H-benzotriazole (1H-BTR), 4-methyl-1H-benzotriazole (4M-BTR), 5-methyl-1H-benzotriazole (5M-BTR) and 5-chlorobenzotriazole (5Cl-BTR) from water. The efficiency of phytoremediation depends on three factors: daily time of exposure to light, pH of the model solution, and the amount of plans. Using a design of experiment (DoE) methods the following optimal values were selected: plant amount 1.8 g, light exposure 13 h and pH 7 per 100 mL of the model solution. It was found that the loss of BTRs in optimal conditions ranged from 92 to 100 % except for 4M-BTR, for which only 23 % of removal was achieved after 14 days of cultivation of W. arrhiza. The half-life values for studied compounds ranged from 0.98 days for 5Cl-BTR to 36.19 for 4M-BTR. The observed rapid vanishing of 5M-BTR is supposed by the simultaneous transformation of 5M-BTR into 4M-BTR. The detailed study of BTRs degradation pointed that the plant uptake is mainly responsible for the benzotriazoles concentration decrease. Toxicity tests showed that the tested organic compounds induce oxidative stress in W. arrhiza, which manifested among others, in reduced levels of chlorophyll in cultures with benzotriazoles compared to control.


Assuntos
Araceae , Água , Biodegradação Ambiental , Clorofila , Triazóis
9.
Physiol Plant ; 173(1): 20-44, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32602985

RESUMO

We evaluated the mechanisms that control Cd accumulation and distribution, and the mechanisms that protect the photosynthetic apparatus of Brachiaria decumbens Stapf. cv. Basilisk and Panicum maximum Jacq. cv. Massai from Cd-induced oxidative stress, as well as the effects of simulated summer or winter conditions on these mechanisms. Both grasses were grown in unpolluted and Cd-polluted Oxisol (0.63 and 3.6 mg Cd kg-1 soil, respectively) at summer and winter conditions. Grasses grown in the Cd-polluted Oxisol presented higher Cd concentration in their tissues in the winter conditions, but the shoot biomass production of both grasses was not affected by the experimental conditions. Cadmium was more accumulated in the root apoplast than the root symplast, contributing to increase the diameter and cell layers of the cambial region of both grasses. Roots of B. decumbens were more susceptible to disturbed nutrients uptake and nitrogen metabolism than roots of P. maximum. Both grasses translocated high amounts of Cd to their shoots resulting in oxidative stress. Oxidative stress in the leaves of both grasses was higher in summer than winter, but only in P. maximum superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were increased. However, CO2 assimilation was not affected due to the protection provided by reduced glutathione (GSH) and phytochelatins (PCs) that were more synthesized in shoots than roots. In summary, the root apoplast was not sufficiently effective to prevent Cd translocation from roots to shoot, but GSH and PCs provided good protection for the photosynthetic apparatus of both grasses.


Assuntos
Brachiaria , Panicum , Poluentes do Solo , Antioxidantes , Cádmio , Estresse Oxidativo , Raízes de Plantas/química , Tempo (Meteorologia)
10.
Sci Rep ; 10(1): 10193, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576894

RESUMO

Phytohormones, such as auxins and cytokinins, take part in the integration of growth control and stress response, but their role in algal adaptation to heavy metal remains to be elucidated. The current research indicated that lead (Pb), one of the most toxic metals in nature, causes severe depletion of endogenous cytokinins, auxins, and gibberellin and an increase in abscisic acid content in the green alga Acutodesmus obliquus. Exogenous auxins and cytokinins alleviate Pb toxicity through the regulation of the endogenous phytohormones' levels. Exogenously applied auxins provoked the coordinated activation metal tolerance mechanisms leading to the increase in phytochelatin synthase activity and accumulation of phytochelatins and their precursors, which are essential for Pb sequestration. On the other hand, phytochelatin synthesis decreased in algal cells treated with cytokinins. Significant changes in the levels of low molecular weight metabolites, mainly involved in metal chelation and glutathione synthesis pathway under the influence of phytohormones in algal cells growing in the presence of Pb stress, were observed. This is the first report showing that auxins and cytokinins are important regulatory factors in algal adaptation strategies to heavy metal stress based on thiol-mediated compounds and the maintenance of phytohormone homeostasis.


Assuntos
Clorofíceas/metabolismo , Clorófitas/metabolismo , Citocininas/metabolismo , Homeostase/fisiologia , Ácidos Indolacéticos/metabolismo , Chumbo/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Compostos de Sulfidrila/metabolismo , Adaptação Fisiológica/fisiologia , Fitoquelatinas/metabolismo
11.
Planta ; 249(1): 123-137, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30594955

RESUMO

MAIN CONCLUSION: 24-epibrassinolide overcame the inhibitory effect of brassinazole on the barley growth and the content of brassinosteroids. The present work demonstrates the occurrence of mainly castasterone, brassinolide and cathasterone and lower amounts of 24-epibrassinolide, 24-epicastasterone, 28-homobrassinolide, typhasterol, 6-deoxocastasterone and 6-deoxotyphasterol in 14-day-old de-etiolated barley (Hordeum vulgare L. cv. Golden Promise). We also investigated the endogenous level of brassinosteroids (BRs) in barley seedlings treated with 24-epibrassinolide (EBL) and/or brassinazole (Brz). To our knowledge, this is the first report related to the occurrence of BRs and application of EBL and Brz in terms of the endogenous content of BRs in barley. Brz as a specific inhibitor of BR biosynthetic reactions decreased the level of BRs in the leaves. Application of EBL showed a weak promotive effect on the BR content in Brz-treated seedlings. Brz also inhibited growth of the seedlings; however, addition of EBL overcame the inhibition. The EBL applied alone at 0.01-1 µM increased the BR level in the leaves but at 10 µM lowered the BR content. In opposition to leaves, the Brz in the concentration range from 0.1 to 1 µM did not significantly affect the content of BRs in the roots. However, application of 10 µM Brz caused BRs to decrease, but treatment of EBL concentrations overcame the inhibitory effect of Brz.


Assuntos
Brassinosteroides/metabolismo , Hordeum/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Esteroides Heterocíclicos/metabolismo , Brassinosteroides/farmacologia , Hordeum/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Esteroides Heterocíclicos/farmacologia , Triazóis/farmacologia
12.
Plant Physiol Biochem ; 132: 535-546, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30316163

RESUMO

The effects of auxins (IAA, IBA, PAA) and cytokinins (tZ, Kin, DPU) on the growth, oxidative damage, level of antioxidants and the activity of antioxidant enzymes as well as the contents of proteins and photosynthetic pigments in green alga Acutodesmus obliquus were investigated under 100 µM lead (Pb) stress. Heavy metal induced oxidative damage as evidenced by a decrease in cell number and reduction in the contents of proteins and chlorophylls as a consequence of an increase in reactive oxygen species (ROS) formation and lipid peroxidation. The application of exogenous auxins and cytokinins modulated biosorption of Pb by algal cells significantly alleviated the growth inhibition and stimulated the accumulation of proteins, chlorophylls and carotenes. Phytohormones also activated the xanthophyll cycle which is extensively involved in the protection of the photosynthetic apparatus in adverse environmental conditions. The reduction in oxidative stress caused by the presence of toxic Pb was observed in algal cultures treated with phytohormones. Cytokinins were more effective in lowering hydrogen peroxide and lipid peroxidation levels in comparison with auxins. This improving effect of cytokinins seems to be mediated by a decrease in Pb accumulation by algal cells, whereas auxins promoted metal uptake. Importantly, auxins and cytokinins enhanced the redox status of algal cells inducing the increase in the content of antioxidants (ascorbate, glutathione, and proline) and in the activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) involved in ROS scavenging. The results of the present study strongly suggest that exogenous auxins and cytokinins enhanced the resistance of microalga A. obliquus against Pb toxicity through the activation of the antioxidant defence system.


Assuntos
Antioxidantes/metabolismo , Clorófitas/metabolismo , Citocininas/farmacologia , Ácidos Indolacéticos/farmacologia , Chumbo/toxicidade , Adsorção , Proteínas de Algas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Clorófitas/citologia , Clorófitas/efeitos dos fármacos , Clorófitas/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Solubilidade
13.
Plant Physiol Biochem ; 124: 175-183, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29414313

RESUMO

Brassinosteroids play an important role in the plant growth and development as well as in the adaptation of plants to environmental stresses. Studies have shown the effect of 24-epibrassinolide (EBL) in the range of concentrations 0.0001-10 µM on the green unicellular alga Acutodesmus obliquus (Chlorophyceae) during 7 days of cultivation. EBL is an effective stimulator of algal growth as it causes an increase in the number of cells and the contents of selected metabolites such as proteins, monosaccharides, and photosynthetic pigments (chlorophylls, carotenes, and xanthophylls). Furthermore, EBL inhibits the formation of reactive oxygen species such as hydrogen peroxide and oxidative damage as evidenced by a decrease of the lipid peroxidation. The positive effect of EBL resulting from the cellular oxidative state can be alleviated by antioxidants such as ascorbate peroxidase, catalase, superoxide dismutase, and ascorbate.


Assuntos
Brassinosteroides/farmacologia , Clorófitas/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Esteroides Heterocíclicos/farmacologia , Relação Dose-Resposta a Droga
14.
Environ Sci Pollut Res Int ; 22(23): 19112-23, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26233754

RESUMO

Green unicellular alga Acutodesmus obliquus (Turpin) Hegewald et Hanagata (SAG strain no. 276-6) (Chlorophyceae) was used for determination of phytotoxicity of lead (Pb) at the range of concentrations 0.01-500 µM during 7 days of culture. The accumulation of Pb in algal cells was found to be increased in a concentration- and duration-dependent manner. The highest Pb uptake value was obtained in response to 500 µM Pb on the seventh day of cultivation. The decrease in the number and the size of cells and the contents of selected primary metabolites (photosynthetic pigments, monosaccharides, and proteins) in A. obliquus cells were observed under Pb stress. Heavy metal stimulated also formation of reactive oxygen species (hydrogen peroxide) and oxidative damage as evidenced by increased lipid peroxidation. On the other hand, the deleterious effects of Pb resulting from the cellular oxidative state can be alleviated by enzymatic (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) and non-enzymatic (ascorbate, glutathione) antioxidant systems. These results suggest that A. obliquus is a promising bioindicator of heavy metal toxicity in aquatic environment, and it has been identified as good scavenger of Pb from aqueous solution.


Assuntos
Clorófitas/metabolismo , Chumbo/farmacologia , Poluentes Químicos da Água/farmacologia , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Clorófitas/efeitos dos fármacos , Clorófitas/crescimento & desenvolvimento , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
15.
Plant Physiol Biochem ; 80: 176-83, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24787502

RESUMO

Interaction between brassinosteroids (BRs) (brassinolide, BL; 24-epibrassinolide, 24-epiBL; 28-homobrassinolide, 28-homoBL; castasterone, CS; 24-epicastasterone, 24-epiCS; 28-homocastasterone, 28-homoCS) and adenine- (trans-zeatin, tZ; kinetin, Kin) as well as phenylurea-type (1,3-diphenylurea, DPU) cytokinins (CKs) in the regulation of cell number, phytohormone level and the content of chlorophyll, monosaccharide and protein in unicellular green alga Chlorella vulgaris (Trebouxiophyceae) were examined. Chlorella vulgaris exhibited sensitivity to CKs in the following order of their stimulating properties: 10 nM tZ > 100 nM Kin >1 µM DPU. Exogenously applied BRs possessed the highest biological activity in algal cells at concentration of 10 nM. Among the BRs, BL was characterized by the highest activity, while 28-homoCS - by the lowest. The considerable increase in the level of all endogenous BRs by 27-46% was observed in C. vulgaris culture treated with exogenous 10 nM tZ. It can be speculated that CKs may stimulate BR activity in C. vulgaris by inducing the accumulation of endogenous BRs. CKs interacted synergistically with BRs increasing the number of cells and endogenous accumulation of proteins, chlorophylls and monosaccharides in C. vulgaris. The highest stimulation of algal growth and the contents of analyzed biochemical parameters were observed for BL applied in combination with tZ, whereas the lowest in the culture treated with both 28-homoCS and DPU. However, regardless of the applied mixture of BRs with CKs, the considerable increase in cell number and the metabolite accumulation was found above the level obtained in cultures treated with any single phytohormone in unicellular green alga C. vulgaris.


Assuntos
Brassinosteroides/farmacologia , Chlorella vulgaris/metabolismo , Citocininas/farmacologia , Brassinosteroides/metabolismo , Monossacarídeos/metabolismo , Esteroides Heterocíclicos/metabolismo
16.
Plant Physiol Biochem ; 71: 290-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23994360

RESUMO

The relationships between brassinosteroids (BRs) (brassinolide, BL; 24-epiBL; 28-homoBL; castasterone, CS; 24-epiCS; 28-homoCS) and auxins (indole-3-acetic acid, IAA; indole-3-butyric acid, IBA; indole-3-propionic acid, IPA) in the regulation of cell number, phytohormone level and metabolism in green alga Chlorella vulgaris were investigated. Exogenously applied auxins had the highest biological activity in algal cells at 50 µM. Among the auxins, IAA was characterized by the highest activity, while IBA - by the lowest. BRs at 0.01 µM were characterized by the highest biological activity in relation to auxin-treated and untreated cultures of C. vulgaris. The application of 50 µM IAA stimulated the level of all detected endogenous BRs in C. vulgaris cells. The stimulatory effect of BRs in green algae was arranged in the following order: BL > 24-epiBL > 28-homoBL > CS > 24-epiCS > 28-homoCS. Auxins cooperated synergistically with BRs stimulating algal cell proliferation and endogenous accumulation of proteins, chlorophylls and monosaccharides in C. vulgaris. The highest stimulation of algal growth and the contents of analyzed biochemical parameters were observed for the mixture of BL with IAA, whereas the lowest in the culture treated with both 28-homoCS and IBA. However, regardless of the applied mixture of BRs with auxins, the considerable increase in cell number and the metabolite accumulation was found above the level obtained in cultures treated with any single phytohormone. Obtained results confirm that both groups of plant hormones cooperate synergistically in the control of growth and metabolism of unicellular green alga C. vulgaris.


Assuntos
Brassinosteroides/farmacologia , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/crescimento & desenvolvimento , Ácidos Indolacéticos/farmacologia , Esteroides Heterocíclicos/farmacologia , Chlorella vulgaris/metabolismo , Sinergismo Farmacológico
17.
Plant Physiol Biochem ; 52: 52-65, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22305067

RESUMO

The present study was undertaken to test the influence of exogenously applied phytohormones: auxins (IAA, IBA, NAA, PAA), cytokinins (BA, CPPU, DPU, 2iP, Kin, TDZ, Z), gibberellin (GA(3)), jasmonic acid (JA) as well as polyamine - spermidine (Spd) upon the growth and metabolism of green microalga Chlorella vulgaris (Chlorophyceae) exposed to heavy metal (Cd, Cu, Pb) stress. The inhibitory effect of heavy metals on algal growth, metabolite accumulation and enzymatic as well as non-enzymatic antioxidant system was arranged in the following order: Cd > Pb > Cu. Exogenously applied phytohormones modify the phytotoxicity of heavy metals. Auxins, cytokinins, gibberellin and spermidine (Spd) can alleviate stress symptoms by inhibiting heavy metal biosorption, restoring algal growth and primary metabolite level. Moreover, these phytohormones and polyamine stimulate antioxidant enzymes' (superoxide dismutase, ascorbate peroxidase, catalase) activities and ascorbate as well as glutathione accumulation by producing increased antioxidant capacity in cells growing under abiotic stress. Increased activity of antioxidant enzymes reduced oxidative stress expressed by lipid peroxidation and hydrogen peroxide level. In contrast JA enhanced heavy metal toxicity leading to increase in metal biosorption and ROS generation. The decrease in cell number, chlorophylls, carotenoids, monosaccharides, soluble proteins, ascorbate and glutathione content as well as antioxidant enzyme activity was also obtained in response to JA and heavy metals. Determining the stress markers (lipid peroxidation, hydrogen peroxide) and antioxidants' level as well as antioxidant enzyme activity in cells is important for understanding the metal-specific mechanisms of toxicity and that these associated novel endpoints may be useful metrics for accurately predicting toxicity. The data suggest that phytohormones and polyamine play an important role in the C. vulgaris responding to abiotic stressor and algal adaptation ability to metal contamination of aquatic environment.


Assuntos
Chlorella vulgaris/fisiologia , Metais Pesados/toxicidade , Reguladores de Crescimento de Plantas/farmacologia , Poliaminas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Carotenoides/metabolismo , Catalase/metabolismo , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/enzimologia , Chlorella vulgaris/crescimento & desenvolvimento , Clorofila/metabolismo , Cobre/metabolismo , Cobre/toxicidade , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Chumbo/metabolismo , Chumbo/toxicidade , Peroxidação de Lipídeos , Metais Pesados/metabolismo , Monossacarídeos/metabolismo , Estresse Fisiológico/fisiologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...